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SUMMARY

Motivated by recent advances in manufacturing, the design of materials is in the focal point of interest in
the material research community. One of the critical challenges in this field is finding optimal material
microstructure for a desired macroscopic response. This work presents a computational method for
mesoscale-level design of particulate composites for an optimal macroscale-level response. The method
relies on a custom shape optimization scheme to find the extrema of a nonlinear cost function subject to a
set of constraints. Three key ‘modules’ constitute the method: multiscale modeling, sensitivity analysis,
and optimization. Multiscale modeling relies on a classical homogenization method and a non-linear
NURBS-based generalized finite element scheme to efficiently and accurately compute the structural
response of particulate composites using a non-conformal discretization. A three-parameter isotropic
damage law is used to model microstructure-level failure. An analytical sensitivity method is developed
to compute the derivatives of the cost/constraint functions with respect to the design variables that control
the microstructure’s geometry. The derivation uncovers subtle but essential new terms contributing to the
sensitivity of finite element shape functions and their spatial derivatives. Several structural problems are
solved to demonstrate the applicability, performance, and accuracy of the method for the design of particulate

composites with a desired macroscopic nonlinear stress-strain response.
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1. INTRODUCTION

The precise evaluation of the effective properties of heterogeneous materials has a long and rich
history, attracting researchers from multiple disciplines. Various theoretical [ 1-3] and computational
[4-6] micromechanics approaches have been widely used to characterize the structure-property
relationships of heterogeneous material systems. The primary objective of these studies is to find
the effective properties of a heterogeneous material for a given set of the phase properties and
microstructure. However, over the last two decades, many researchers restated this question as an
inverse problem, i.e., how can the different phases of a heterogeneous material be distributed to
target or optimize a particular macroscopic material property [7].

The aforementioned inverse problem is an optimization problem and has been solved via
different optimization techniques. Among these different approaches, topology optimization is the
most popular wherein it is combined with homogenization tools to develop the so-called inverse
homogenization approach. For example, Sigmund [8, 9] used it to optimize the microstructure of
a periodic unit cell for minimum weight with prescribed macroscopic elastic and thermoelastic
properties. It has since been employed to design composite materials with extreme elastic or
thermal expansion [10-13], fluid transport [14], auxetic [15-18], and other multifunctional [19-21]
properties. Osanov and Guest [22] provides a good review of this topic.

Even though topology optimization approaches have been mostly employed for the design of
structures with the linear elastic response, some topology optimization studies considered material
and geometrical nonlinearities for structural design applications. Some researchers have addressed
geometrical nonlinearity in topology optimization. These include Jog [23], Buhl et. al. [24], Bruns

and co-authors [25-28], Kwak and Cho [29], Abdi et al. [30], Chen et al. [31], Deng [32],
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Dunning [33], Xu et al. [34], and Zhu et al. [35]. Other authors have investigated the topology
optimization of nonlinear structures [36—49]. Yuge and Kikuchi [36], Maute et al. [38], Yoon and
Kim [39], Alberdi et al. [47], and Zhao et al. [49] have used topology optimization to design
structures undergoing plastic deformation. Several authors have also incorporated damage materials
models into the topology design of continuum structures [37,41-43,45]. More recently, advances
in high-performance computing have set the stage for the computationally intensive design of
nonlinear structures based on multiscale topology optimization [50-55].

Topology optimization has also been combined with nonlinear homogenization for the design
of material microstructure to achieve prescribed macroscopic properties. For example, Swan in
collaboration with Arora [56] and Kosaka [57] has studied the topological design of elastic
and inelastic composite materials. Some other authors used this approach to design auxetic
metamaterials [55,58-62] and cellular materials [46] with prescribed nonlinear properties.

In contrast to the abundant studies on inverse homogenization using topology optimization,
limited studies have been devoted to combining shape optimization and inverse homogenization
for the design of composite materials. In one of a very few related studies, Ibrahimbegovic et
al. [63] investigated the shape optimization of a two-phase inelastic composite microstructure,
in which the matrix phase exhibited plasticity and the inclusion phase damage. The interface
geometry in a periodic cell containing a single inclusion was optimized to maximize the amount
of plastic dissipation or the external work. Other authors combined a 2D isogeometric shape
optimization and inverse linear homogenization to design periodic microstructures [64] and auxetic
materials [65, 66]. In a recent publication [67], some of the authors of the present manuscript
developed a multiscale shape optimization scheme to design the microstructure of 3D particulate
composites to obtain a desired nonlinear response. In that study, the framework was built on
an Interface-enriched Generalized Finite Element Method (IGFEM) [68-70] and the material
nonlinearities were associated with interfacial debonding of inclusions from a surrounding matrix,

which was modeled using a cohesive failure model.

(2020)
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4 A.R.NAJAFI ET AL.

Herein, we develop and implement a shape optimization method to design composite material
microstructures based on a NURBS-based Interface-enriched Generalized Finite Element Method
(NIGFEM) to achieve a prescribed macroscopic behavior. This work builds on our previous studies
( [71] and [72]) that introduced two Eulerian-based shape optimization schemes by incorporating
the IGFEM [68-70,73] and NIGFEM [74-77], respectively. Similar studies are performed to design
microvascular panels for active cooling applications [78-85].

The composite material design problem is illustrated in Figure 1. The design domain is a
periodic unit cell consisting of several inclusions. Its homogenized macroscopic nonlinear behavior
is denoted by the solid black curve in Figure 1(b). The optimization goal is to find the geometry and
material properties of the inclusions to achieve the desired macroscopic response, depicted by the
dashed red line in the same figure, in other words the goal is to minimize the shaded area between

the two curves.
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Figure 1. (a) Schematic of a deformed periodic unit cell; (b) unit cell and desired macroscopic stress-strain
curves. The optimization finds the desired microstructure to minimize the shaded area between the two
curves.

We formulate this problem as an inverse homogenization problem that is solved via shape
optimization. The desired nonlinear macroscopic structural response is attributed to the multi-
phase composite material that is modeled with irreversible isotropic damage laws. To perform
the sensitivity analysis for this optimization problem, we derive an analytic direct differentiation
sensitivity formulation in the NIGFEM framework. Combining shape optimization, NIGFEM, and
computational homogenization, we develop a design framework to optimize the microstructure of a
composite material to attain a prescribed macroscopic nonlinear behavior. In contrast to our previous
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study on the multiscale nonlinear design of 3D particulate composites [67], we use a continuum
damage law to introduce the material nonlinearities to our models. Here, we adopt a NURBS-based
IGFEM that provides a more accurate description of the geometry and stress-strain modeling over
a relatively coarse mesh.

The organization of this paper is as follows. In the next section, the construction of the NIGFEM
enrichment functions for 3D problems is summarized. Section 3 is devoted to the computational
homogenization of general linear/nonlinear elastic periodic composites. We then discuss the damage
model in Section 4 and describe the numerical algorithm used to simulate the evolution of damage.
In Section 5, the optimization problem and sensitivity analysis are described. Numerical verification

and application examples are presented in Sections 6 and 7, respectively.

2. 3D NIGFEM ENRICHMENT FUNCTIONS

The NIGFEM formulation for 2D problems has been presented in [72, 74, 86], while the 3D
NIGFEM implementation appears in [75]. To avoid repetition, a summary of the key concepts and
notations associated with the NURBS and NIGFEM formulations are presented in Appendices A
and B, respectively, and only the construction of the 3D NIGFEM enrichment functions is described
in this section.

To introduce 3D NIGFEM enrichment functions, let us consider a structural problem on a
heterogenous domain. We discretize the domain Q =2 Q" with a fixed mesh that conforms to the
fixed domain boundary 02 but not to the material interfaces I';, cf. Figure 2. The displacement field

in each element intersected by the interface I'; is approximated as

Ne My My,
w'(y) =Y Ni(y)wi+ Y Y tin(y)eg. (1
i=1 j=1k=1

The first sum on the right-hand side of (1) represents the classical finite element interpolation with n,
standard Lagrangian shape functions, N; (y), and the standard nodal dofs u; = [u!* u}? ulf’]T. The

second sum represents the augmented contribution with the n,, = ny, x ny, enrichment functions

(2020)
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6 A.R.NAJAFI ET AL.

T
;i (y) and their associated generalized dofs «;, = [oz;’}c oy aﬁ} , where ny, and ny, are the

number of enrichment functions along the two parametric directions that define the NURBS surface
that models the material interface I'; within the element. The number of NURBS basis functions,
ny, depends on the level of geometric complexity of the material interfaces and the discretization

of the underlying mesh [74,75].

To construct the enrichment functions for the NIGFEM, consider the domain ", shown in Figure
2(a), discretized by a non-conforming structured mesh composed of n. standard trilinear hexahedral
elements Q7. The domain Q" contains a material interface ' represented by a NURBS surface of

order p and ¢ such that

L m
I'= {(ga 77) € [07 1] X [07 1] 'y = S (5’ 77) = ZZRi.j7P-q (57 77) Pz]} 3 (2)

i=1j=1

where R; ;4 (&, n) are the rational B-spline basis functions, i.e., the NURBS basis functions,
defined in (A.8), {P;;} (i=1,2,..,1, j=1,2, ..., m)is an array of control points that define
the net, and (£,n) is the pair of parametric surface coordinates (knot vectors), all introduced in
Appendix A. We assume without loss of generality that the material interface is a straight cylindrical
inclusion normal to a plane of the non-conforming mesh shown in Figure 2(a)*. As illustrated in
Figure 2(b), we consider two possible arrangements for a hexahedral element that is split by a
straight cylindrical inclusion. To generate enrichment functions for such an element 2., we need to
construct 3D NURBS volumes of the element subdomains le) and 99, as shown in Figure 2(d).
This is a three-step process. We first intersect the material interface I with the element faces 0€2. and
use the global intersection calculation procedure introduced in [87] to find four boundary NURBS
curves C$%, i =1, ..., 4, as shown in Figure 2(c). In the second step, we define a portion of the
material interface I, residing in the element €).. In general, I'. is not a NURBS surface. Therefore,

we need to find a NURBS approximation to I, which we refer to as I'* in Figure 2(c). To construct

TWithout loss of generality, we assume that the material interface T is represented by a bi-quadratic NURBS surface
S(&m)-

#For more complex geometric combinations arising from the intersection of a material interface I'. with a hexahedral
element 2., we refer to [75].

§Since I' is a bi-quadratic surface in this study, the C¢ are at least quadratic.

(2020)
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FQ, we generate a bilinearly blended Coons surface [87] from the boundary of I, i.e., from the
four NURBS curves C5, i =1, ..., 4 (Figure 2(c)). I‘Z is referred to hereafter as the sub-interface
and it is worth mentioning that the order of the Coons surface is dictated by the order of boundary
NURBS curves C$ Y. Finally, the element boundaries 92, and interface T'” are used to construct the
115 3D NURBS volumes for the subdomains le) and Q‘(f), cf. Figure 2(d). These volumes are used to
define the enrichment functions v, of (1). We repeat this three-step procedure for every element

Q. intersected by T'.
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Figure 2.(a) NIGFEM domain with a cylindrical interface S(£,7) discretized by a non-conforming
structured mesh of trilinear hexahedral elements; (b) two possible geometric configurations for elements
traversed by straight cylindrical material interface; (c-d) Reconstruction of NURBS surface T'? from the
computed boundary curves C{ and NURBS volume Qf,i = 1,2 corresponding to the intersected element.
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For more clarification, let us further explain the procedure of constructing the NURBS
representation of the subdomain fo) (i =1,2). As seen in Figure 2(d), the element €. is divided

120 into two curvilinear subdomains Q") and Q(? that meet at the internal interface I'" . These
subdomains Q1) and Q) are the integration elements. To build 3D NURBS volumes for these

integration elements, we choose the order of the basis functions for Qgi) to be p = ¢ =2 in the

9The quadratic boundary curves C¢ ensure the Coons surface of I'? is bi-quadratic NURBS surface.
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8 A.R.NAJAFI ET AL.

¢- and 7)-directions!, along the interface, and r = 1 in the (-direction that is perpendicular to the
interface. We also use m = n = 4 control points in the parametric ¢- and 7-directions, and two in
the ¢-direction**. To reproduce the edges of Qg), we use superposing control points. As illustrated in
Figure 2(d), sixteen control points {P; ;. o} (j, k = 1,...,m = n = 4) define the sub-interface I'* of
le) (See Appendix C for details on how we define these control points). We subsequently introduce
sixteen dummy'' control points {Pjr1} (j,k=1,....,m=n=4), ie., four-four times control
points superimposed to model the element edges. The 4-times superposed control points {P1_4 11}
and {P;_441} are coincident with two nodes of the element 0!, and the 4-times superimposed
control points {P1_4 4.1} (k= 2,3) are uniformly spaced between them. We then define a knot
vector for each parametric direction based on the order of the subdomains and the number of
control points in their directions. We use normalized knot vectors E = ‘H = {0,0,0,0.5,1,1,1}
for the parametric ¢- and n-directions, and Z = {0, 0, 1, 1} for the {-direction. Using the control net
{Pjri}, j,k=1,..,4, 1 =0,1 and knot vectors 2, H, and Z, we build the 3D NURBS volume
for subdomain le). The same approach is employed to construct a NURBS volume for the
integration element ng), utilizing {P;x,;} (j,k=1,...,4,1=0,2) and the same knot vectors
Z,H,and Z. The NURBS basis functions associated with the integration elements Q! and Q(?

are denoted by rY and R'?)

S kdp.qr i hlp.qr With 1= 0,1 for QM 1=0,2for O, and j, k=1, ....4

as shown in Figure 2(d). Since we have assumed p = ¢ = 2 and r = 1 in this study, we hereafter
drop the subscripts p, ¢, and r from the NURBS basis for convenience.
The enrichment functions v, (y) correspond to the control points {P, ; ¢} along the material

interface and are defined piecewise as

W) (v) = RV () ify e ol
Vi (¥) = k=1, .., 4. (3)

v (v) = R, (y) ify € 0

IThe order of the approximation for the basis functions is arbitrary in the NIGFEM, and, for a highly curvilinear
interface, we may improve the precision of the approximation by choosing higher-order basis functions.
**The number of control points in each parametric direction can vary depending on the geometric complexity of I'c.
tThese control points are called ‘dummy’ because no degree-of-freedom is associated with them. They are solely
used to construct NURBS volumes.

(2020)
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The enrichment functions ;; (y) are non-zero only in the interior of €, i.e., they vanish on the
faces of (), that do not intersect the interface I'.. Moreover, these functions are C°-continuous in

Q.. Therefore, the displacement field u” is also C°-continuous.

3. COMPUTATIONAL HOMOGENIZATION

The objective of homogenization techniques is to determine the effective overall (macroscopic)
properties of a heterogeneous material. They have been developed for linear and nonlinear materials
in [88-90]. In this study, we adopt the homogenization scheme described in [§9], where it is assumed
that the macroscopic structure is formed by a repeating composite unit cell, where the size of the

unit cell is very small compared to the macroscopic structure.

To begin, let us consider a macroscopic body, €2;;, wherein each point X € ), is assigned
a representative volume element, i.e., unit cell, which models the heterogeneous microstructure.

In our study we assume each volume element is identical, i.e., we use periodic unit cells £, =
€

5 [—1, 1]3, where e is microstructure length scale. We also assume there are no instability or

bifurcation phenomena at the microstructural scale that break the symmetry of the periodic unit
cell resulting in the non-convexity of the microscopic strain energy density function. Assuming that
the microstructural length scale is much smaller than its macroscopic counterpart, we decompose

the displacement solution in €2, as

u(y)=Vuy +u(y), 4)

where u is the perturbation (i.e., fluctuating) displacement due to the material heterogeneities (that
is periodic and has zero average on (), @ denotes the macroscopic displacement gradient, and y
is a point coordinate in 2. Owing to the assumption of periodicity, all admissible displacements
fields u € V where

Vz{v\vEHl(Qb);V:Ay—l-f/}, 5)

(2020)
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in which H' is a Hilbert space, A is an arbitrary real second-order tensor, and @1 € V where
Y= {i'z| veH! () ; v has zero average and is Y-periodic on 39;,} . (6)
165 The local strain in 2, with the small strain assumption takes the form
e(y)=e+ely), @)

where € = (Vﬁ + (Vﬁ)T) is the macroscopic strain and

| =

(va + (va)T) . ®)

is the perturbation strain.

In our strain-controlled homogenization problem, we impose a history of macroscopic strain &

on the unit cell and compute the corresponding perturbation displacement field u by enforcing

170 equilibrium [56]. The periodicity of u leads to the periodicity of Vu. And assuming strains and
stresses are linear on the boundary of the unit cell, it can be shown that the traction o, = o - n is

aperiodic [56] and thus, equilibrium, in the absence of body forces, requires that u € V satisfies

/ o (u):e(0u)d =0, )
Qp
foralla € V.

Having o from (9), we compute the homogenized macroscopic stress & as [56, 89]

1

— od. (10)
12| Jao,

o=
175 Marching through time, we evaluate the response trajectory by computing the perturbation
displacement field u from (9) and then the corresponding macroscopic stress & from (10).

(2020)
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4. DAMAGE MECHANICS

To introduce nonlinearity to our model, we adopt the irreversible isotropic damage law suggested
by [91, 92]. In this section, we first summarize the model. Then, we outline our numerical

implementation and highlight important aspects of the coupled nonlinear analysis.

180 4.1. Isotropic continuum damage model

The damage model is based on the following form of the free energy potential [91]:

¢(5»W)=(1—w)¢o (5)» (11)

where 1 (¢)* is the initial elastic stored energy function in an undamaged (virgin) material, given
for the linear case by
1

o (g) = € Dy : e, (12)

where Dy is the positive definite linear isotropic elasticity tensor. The factor (1 — w) on the right-
185 hand side of (11) provides the coupling between elasticity and damage.

Using the constitutive assumption (11) and the Clausius—Duhem inequality

—+o:&>0. (13)

It can be shown that the stress tensor satisfies

_W(ew) I (e)
o= =(1-w) 5 (14)
a thermodynamic force Y exist such that
_0(ew)

HWe assume that € — 1) (&) is a convex function.

(2020)
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and dissipation inequality is defined as

D=-Yw>0. (16)

In the above, —Y is called the “damage strain energy release rate” and, since —Y is non-negative,

we can interpret from (16) that w > 0, i.e., the damage is not reversible.

Analogous to the yield surface in plasticity theory, we assume that damage occurs if the following
damage condition is violated,

g(¥)=G(-Y)—w<0, (17)

where everything is a function of time and at time ¢ = 0, w(t) = w® = 0. In (17), the progressive
degradation of the mechanical properties due to damage is characterized by the function G, which

is represented by a three-parameter Weibull distribution [93],

G(Y)=1—exp [ <YY1‘”>M], (18)

where Y;,, is the initial threshold, and p;, and po define the dimensional scale, and shape of the

curve. The isotropic damage model (18) is able to represent a wide range of materials.

To capture the damage growth, we minimize the regularized dissipation function

D,=-D+ %u (6 (9)?, (19)

where p is the damage fluidity coefficient, the scalar valued function ¢ is the viscous damage flow
function, and the symbol () denotes McAuley brackets. In the current study, we assume linear

viscous damage, i.e., ¢ (g) = g, as suggested in [91,92]. We then solve
. 1 2 1 2
min Dy, = —D+ 5p(g)” =Yw+ ulg)”, (20)

and the Karush-Kuhn-Tucker optimality conditions require

(2020)
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. dg
w=—pg) BV (2D
Expanding the right-hand side of (21) gives
w=plg) G'(=Y), (22)

By excluding the G'(—Y") > 0 contribution in (22) as suggested in [94], the evolution of w is reduced

to

w=p(g). (23)

The damage model described above is the rate-dependent (viscous) damage model presented
in [91, 92] by introducing the damage fluidity coefficient ;. This model addresses the issues
associated with rate-independent models that may lead to loss of strong material ellipticity, which
manifests itself with localization phenomenon and mesh-sensitivity numerical computations. As
w approaches zero, the model exhibits instantaneous elastic behavior, whereas, for ;1 approaching

infinity, the model exhibits rate-independent behavior.

4.2. Coupled nonlinear analysis

The analysis of a coupled damage-elasticity problem with nonlinear history-dependent material
response can be performed by applying the algorithm for transient nonlinear coupled systems
described in [95]. Let U, W, R, and H denote the displacement, damage state variables, equilibrium
residual, and damage evolution residual vectors. A transient nonlinear coupled system at time "¢
can be expressed in residual form as
"R (”[U, "y, "W, ”’1W) =0,
(24)
"H ("[U, e VRA'A ”’1W) =0,
where "R and "H are global equilibrium and local damage evolution residuals at time step "¢, "U
and "~'U are the global displacement response vectors and "W and "~'W are the local damage

(2020)
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state variables at time steps ™t and "~ 1¢. Suppressing "~ !¢ terms known quantities, (24) is written
as

R (n[U) nw) _ 07
(25)

HH (71/U7 7LW> — O.
As usual for nonlinear problems, the coupled nonlinear system (25) can be solved iteratively by
implementing the Newton-Raphson method to obtain U and "W wherein "R and "H are assembled

into a single residual as

"R ("U) = —0, (26)
nH (TLU7 rLW)

where
U
"YU = . 27)
"W
However, following [96], another way to obtain the solution of this coupled problem is to
uncouple it by treating the local response W as a function of the global response U and implementing
the Schur component Newton-Raphson scheme in two nested iterative loops, as described in [95,97].
In this approach, (25) is written as

HR (n'[U7 YLW (TIU)) — 0,
(28)

TLH ('VLU7 TLW (TLU)) — 0
First, we evaluate the local response "W ("U) in the inner loop by solving the local residual of (28)
using the Newton-Raphson method for a fixed "U. In this iteration, the incremental response §W is

computed as
O"H
oW

("U,"W ("1)) 6W = —"H ("U,"W’ ("1)), 29

H
where STW is called the local tangent operator. Computing the incremental response éW, the local
response is updated as

"W/ ("U) = "W ("U) + dW. (30)

(2020)
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We repeat the Newton-Raphson subiterations in the inner loop until it converges to obtain "W ("U).

Linearizing the global residual equation in (28) and implementing the Newton-Raphson method

in the outer loop results in the following equation for the incremental response 6U:

8nR n n n
O (U W (") +
O"R oW G
) nyyl n ny1l ny1l _ . n nytl n ny1l
Sy ("L (1U0) G (10T)| 6 = R (0T, (10T
where the term in square brackets represents the global tangent operator and
8Wn[__ 8anIn n1l 716”Hn1n ny1l
T ) = (G (UL V) ) S VLW U)o

follows from differentiating the local residual equation H = 0. Upon evaluating the incremental

response 6U, the global response in the next iteration, nJI+1 is obtained from
Uittt =t 4 6U. (33)

The iteration-subiteration process in two nested Newton-Raphson loops is repeated for each iterate

"U’ until the global residual equation (28) converges.

In a multiscale NIGFEM framework, the elastic-damage coupled nonlinear problem presented in
Section (4.1) is solved by the local-global algorithm described above. Combining the weak form (9)
and the finite element discretization provides equilibrium residual vector,

R ("U°, "w) = A/ B'o ("0, "w)dQ. =A > BTMow|J[=A Y "Ry, (34)

Qe (& e

€
Gauss points Gauss points

where 16% is the finite element assembly operator, (2. is the finite element domain (£2; = :Liflﬂe for
N, finite elements), B is the strain displacement matrix defined in Appendix B, "U¢ is the vector
of nodal element perturbation displacements (cf. (4)), and "w is the vector of Gauss point damage
state variables. As seen above the integral is approximated via a Gaussian quadrature where J is the

Jacobian of the isoparametric mapping, w is the Gauss weight, and "o is the stress tensor defined

(2020)
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by (12) and (14),

"o = (1- "w)Dy (e +B"U°), (35)

where € is the macroscopic strain introduced in (7). Finally, "R, is ellement guass point residual.

Before evaluating "R, in (34), one needs to compute the Gauss point damage variables "w by
resolving the local residual equations. If the damage criterion (17) is violated or if g = 0, the local
residual equation is formed from the damage evolution Equation (23) and the implicit backward
Euler scheme as:

("lw+ AtpG (—"Y (e + B T?)))

1+ Ats —"w =0, (36)

anp (nfje7 "LU) —

where At =" t —"~! ¢ is pseudo-time step. If g < 0, no further damage occurs and the local residual
"™ H is simply

"Hyp, ("w) =""tw — "w = 0. 37

Ultimately, the " H, = 0 equation is solved at the local level, i.e, at each Gauss point in the mesh.

Fortunately, these scaler equations are not coupled.

Upon evaluating "w we compute the global tangent operator introduced in (31) by looping over
all the element Gauss points as

"K=A Y K] (38)

gp’
Gauss points

where "K¢ , is the element €2. Gauss point tangent stiffness matrix

(39)

gp onUe W

npee _ 9"Rgp 0"Rygp (0"Hgy - 9" Hy
O"w onUe
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O"R,, O"R,, O"H,  O"H

In (39), th ¢ bp ’ and @ Ha o
265 In (39), the operators e o o 2 g, are computed as
J"R
7~gp — ]BT (1 _n UJ) DO]B'IU|J|,
oruye
"R .
o= ~BDy (e + B"U) wlJ]
% =1, “0)
o"w
At/.L 8G ~ T .
T 1+ Atn e+ B"U°) DB ifg>0
O"Hyp 1+At,u8ny(€+ )" DB if g >0,
anﬁe .
[0] lfg < 0,

where £ is the macroscopic strain introduced in (4).
Ultimately the global tangent operator (38) is used in (31) to evaluate the incremental perturbation

displacement §U.

5. OPTIMIZATION PROBLEM AND SENSITIVITY ANALYSIS

Our optimization problem is stated in mathematical form as

min /g (PU(X(d),d), "W(X(d),d), ..., Y UX(d),d),Nr W(X(d),d),X(d), d),
such that d* < d < d“b,
h; (“U(X(d),d), "W(X(d),d), ..., " U(X(d),d),"" W(X(d),d), X(d), d) <0,

(41)

270 for j =1, 2, ..., nc, where hy is the objective functional, h; denotes the nc inequality constraint
functionals, X denotes the mesh nodal coordinate vector, and d is the design variable vector,
subjected to the lower and upper bounds d' and d“?. The design variables describe the inclusion
geometrical parameters and the material properties that ultimately determine the homogenized
response of the composite material.

275 We solve the optimization problem (41) via a gradient-based approach to efficiently search the
design space for the optimal solution, and thus we must provide the sensitivity of the objective and
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constraints functions. And because the design variables describe both geometry and material, we
must compute both shape and material sensitivities. The path-dependent nature of the nonlinear
problems of interest are accommodated by utilizing the path-dependent direct differentiation
sensitivity analysis in [95] and the shape sensitivity is obtained by using the development in [72].
To present the sensitivity analysis, let us redefine the objective and constraint functionals by

considering only the terminal responses for conciseness as

F(d)=h; (VU (X(d),d), YW (X(d),d), X(d)) for j=0,1, .., nc 42)

For shape parameter d;, the sensitivity of the functional expressed in (42) takes the form

dF oh; \" n. 2 ohy \" n. oh;\"

R . FW. htd'} . 4

z (aw) Uit (o) Mo+ (2 v, 43)
where T[},- = %Vi + g—g and W, = %Vi + g—y are the unknown material derivatives and
V; = X (d) is the vector of nodal design velocities, i.e, the derivative of the node locations with

od;

respect to the design parameters. For the material parameters d;, the sensitivity takes the simpler
form:

: (44)

dF < oh; )TaNfIU ( Oh; )TaNfW Oh;

i, _\ovu) “od oW ) “od, T 9d;

For conciseness, we present hereafter only the details for the shape sensitivity (43).

To evaluate (43), we utilize the direct differentiation method wherein we compute the unknown
material derivatives [[ji and V\%. To this end, we define the response fields U and W as functions of
the design variable d, and write (24) as

"R("U(X,d),""'U(X,d),"W (X,d),""'W(X,d),X) =0,
(45)

"H("U(X,d),"'U(X,d),"W (X,d),"'W(X,d),X) =0,
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*
where it is understood that X is a function of d. To evaluate the implicit response sensitivities ~+ U,

and VW, we differentiate the residuals (45) with respect to design variable d; as

f]R{NU 4 VIR Nf—l]f}i_'_aNfRNW 4 YR Ny- 1W +a Ry, =0

oNfuU a”f u oNFw aNf tw (46)
NIH N ONIH Ny—1 NI Ny ONIH Ny—1yy. . 0NV Hy. _
8NfU U+ SN -Ig U+8fw W+ SN Tw W1+ % Vi=10

* *
Rearranging the second equation of (46), we detain an expression for V#W; in terms of V/U; as

N * N * N * N . N
(a fH) Nryy, = P L Ak WA A A A

oNr W oNsU " 9NsTU oNs—TW oX
ONFH | . . .
where IV is the local tangent operator used in the inner loop of the Newton-Raphson algorithm

(29), and the term in the bracket on the right-hand side is referred to as the “local pseudo-load”.

Substituting N+ W; from (47) into the first equation of (46) results in the following “global pseudo

problem”

VIR n g ONVIR
oNs—1U

ONFR - 9N/R (ON/H\ T ONH
oNiU  ONiW <8NfW> oNiU

Nfﬂ-i _ [

ONSR AN R <8Nf]I-]I>1

Tox VT aviw \ aviw
ONH ONH *
<8Nf A l*aNf—lef Wi
ONSH
X Vi)]’
(48)

where the left-hand side quantity in bracket is the global tangent operator introduced in the outer
loop of the primal analysis (31) and the right-hand side forms the ‘“global pseudo-load”. After
evaluating V7 U; from (48), VW, is obtained from (47). Note that in the pseudo problems we

solve for U and then W, but in the primal problems we first obtain W then U.

* *
Equations (47) and (48) contain the derivatives V7 ~1U; and V/~'W,. But these are easily
evaluated. Indeed, just as we march in time to evaluate NyU and M*W, we march in time to
* *
evaluate V7 U; and V7 W;. Starting from (46) we let V¢ — 1t and use our knowledge of the initial
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conditions Oﬁi =0and OV%}Z- = 0 to evaluate 11[1— and 1V§/i by first evaluating the pseudo-load in (48)

and computing the material derivative 11[},» using a back-substitution of the previously decomposed

global tangent stiffness matrix of (38). We then compute 1?\;‘% by solving the local pseudo problem

(47) at each Gauss point. We then proceed to time 2t using our knowledge of 1@ and W*’\Vi to evaluate
310 26,» and QVy{/i and so on. So the analysis for U and W and the sensitivity analysis for I[}L and Vgﬂ are

performed in tandem. At each time step "¢ we evaluate "U and "W and then their sensitivities "ﬁz
a from (42) and (43), respectively.

dd;

As depicted in Figure 1, the objective of our optimization problem is to obtain the desired

and "W,. Finally, we evaluate F and

macroscopic material response by minimizing the objective function

&ma _ . 12 =
max g, d) — desired g de
ho (@) = 17 D — o @] de (49)
fO max ”U-desned (é)” de
315 To perform the sensitivity analysis, the global pseudo-loads introduced in (48) at the loading step

"t are evaluated by assembling the element 2. pseudo-load vectors that are computed by summing

over the Gauss points,

"P.=A Y P, (50)

Gauss points

where "P{  is determined for each finite element Gauss point as

"R > 9"R . O'R "R, (0"H, \ "
npe _— _ 9~Z7 nferZ_ gp n—1 i gpvg _ gp gp
" L)nlue T YT TaXe T ow \ o

O"Hyp n1 o " Hyp 1+ 9" Hyp
—="T U+ — " Wi+ 5 VS J.
. <8n1Ue o, @it xe Vi) | el

(G

In (51), Ry, and H, are the global and local Gauss point residuals introduced in (34) and (36),
0"Ryp 0"Ryp 0" Hg,

s , an =
on—1Ue or—1w on—1ye
0"Ryp 0"Rgp 0"Hgyp 0" Hgyp,

320 respectively. The operators

vanish owing to the definition of R,

and H g, and the operators e’ e O and e are defined in (40). The operator
"H
3n—1g£ is expressed as
L ifg>0
omH,, 1+ Al g=yY,
m = (52)
0" 1w
1 if g <0.
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.
oXe

. O"R L . .
The quantity 9P'y¢, which is nonzero over the enriched elements, is

"R, « T ) L Mll MIQ nfje
e Vi =Bi (1-"w) Dy (€ +B"T°) + ?

<M12)T Mo, ”sz (53)

+BT (1 -"w) Dy (€ +B"U) vec (I)" BVE,
where vec (1) is the vector of Identity matrix, and the l\N/Iij matrices entering (53) are given by

I * *T
M11 = BJT\} (1 —n (JJ) DOBNi +BN1' (1 - w) DOBN:| 5

M * * T
Mz = |BL (1 =" w)D¢Byi + By, (1 -"w) DOBw} , (54)

[ * w« T
M22 = B;i (]_ - w) D()sz + sz (]. - w) D()Bw:| .

325 In (53), "ﬁj, is the perturbation displacement associated with the enriched dofs added to the
element along the material interface, and ”fJ; is the perturbation displacement of the original
nodes (Figure 2(d)). Combining these two terms, we have the element perturbation displacement
nUe = (nfj}c;)T (nsz)T T. The matrices B, By, and B, and their derivatives ﬁaz ﬁm, and
§¢, appearing in (53) and (54), are provided in Appendix B and [72].

330 The term vec (I)T BV¢ in (53) is the divergence of shape velocity field. More details for

computing the shape velocity are presented in Appendix F and [72].

anP
Xe

The Gauss point operator V¢ appearing in (51) is computed as

__Atp 090G
14+ Atpony

= n~eT *n"'e :
o H,, (E+B"U°) DB,"U° ifg>0,

oXe

Ve = (55)

0 ifg <0.

6. VERIFICATION EXAMPLES

In this section, we present a number of problems involving the design of composite materials

exhibiting linear and nonlinear behaviors. In the first example, we design a 3D linear structure to
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verify the proposed NIGFEM shape optimization scheme. In the next examples, we demonstrate the
multilevel framework to design composite materials. In these verification case studies, we design to
a macroscopic stress-strain curve associated with a particular inclusion configuration. In this way,

we guarantee that the optimal objective function value equals zero.

6.1. Optimal design of an ellipsoidal inclusion subjected to uniaxial loading

In this first example, we find the shape of an ellipsoidal inclusion embedded in a cube domain
subjected to uniaxial tension o, to minimize the compliance of structure. As depicted in Figure 3,
the domain is an L3 cube with ellipsoidal inclusion, that is stiffer than the surrounding matrix
(E2/Ey =30 and vq = 1.515). The design variables are the lengths and orientations of the
three ellipsoid axes. The range of the three ellipsoid axes are 0.2L < a <0.4L, 0.1L <b <
0.3L, 0.05L < ¢ < 0.25L and their angles are limited to [0,7/2]. A maximum inclusion volume
(V <4/3 x 7 x (0.3L)% = 0.1131L3) constrains the optimization problem. Owing to the loading
condition and the material mismatch between the inclusion and the matrix, we expect the ellipsoidal
inclusion to attain the maximum allowable volume and orient its major principal axis in the loading
direction. Starting far from optimal point (Figure 3(c)), the compliance gets minimized in few
iterations by moving to the expected optimal design (Figure 3(d)), whereas the volume constraint is

satisfied as shown in Figure 3(b).

6.2. A unit cell with two inclusions subjected to macroscopic pure shear strain

In this example, we couple our shape optimization method with computational homogenization to
design the composite microstructure to obtain a desired macroscopic shear stress when subjected
to a macroscopic pure shear strain &,,. The design domain is the periodic L? unit cell with two
inclusions as shown in Figure 4. To model the unit cell, we use a 3D finite element mesh that has one
element in the thickness direction. We assume damage only occurs in the inclusions. As illustrated
in Figure 1(b), the optimization goal is to find the radii and locations of the circular inclusions to
achieve the macroscopic stress-strain curve depicted by a red solid curve in Figure 5. The objective
function for this example is defined by (49) wherein the trapezoidal rule is used to compute the
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Figure 3. Shape optimization of a stiff ellipsoidal inclusion embedded in a cubic domain subjected to an

uniaxial loading: (a) problem description; (b) convergence history of the structure compliance and the

inclusion volume fraction constraint; (¢ and d) initial and optimal designs. The contours represent the
normalized displacement in the z-direction over the inclusion surface.

integrals. To prevent the inclusions from overlapping, we constrain the distance C;; between the
centers of inclusions 7 and j such that C; > R; + R; + 0.08L, where R; denotes the inclusions’

radii. We also define additional constraints that ensure the inclusions are wholly inside the domain.

----- !—> 5$y—> - __
)
| B2, v2
¢(p1)z, (p2)2
i(Y;n)Q
i
Y p1)3, (P2)3
! (Yin)s T
L, Bom

Figure 4. Multiscale design of a nonlinear composite: periodic unit cell including two inclusions. The design
variables are the size (radius) and center location of inclusions.
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To model the isotropic constituent materials, we use F» = 10E; = 100E5 = 100 GPa and v, =
0.22 and v, = v3 = 0.34. We also assign p; = 10, po = 1, and p = 205~ for both inclusions, but
(Yin)s = 10(Yi, )2 = 500 Pa, cf. (18). The desired stress-strain response is associated with inclusion
1 located at: X.; = 0.35, Y.; = 0.65 with Ry = 0.25, and inclusion 2 located at: X., = 0.75,
Y. = 0.25, with Ry = 0.15.

Figure 5 presents stress-strain curves for a few selected iterations. We observe that, although
we start far from the desired response, the optimizer quickly converges to the desired macroscopic
stress-strain curve. Figure 6 presents the results obtained for five different initial designs and shows
that all converge to optimized microstructure configurations with the same desired macroscopic
nonlinear response. As illustrated in Figure 6, the different optimized configurations actually
represent one unique microstructure, but for a transformed unit cell. Specifically, there are four
different inclusion configurations that produce the desired nonlinear response due to the periodicity
of the unit cell, which is subjected to macroscopic pure shear strain. Figure 7 illustrates the deformed

and undeformed shapes of the initial and optimized periodic unit cells for the design 3 of Figure 6.

40 25 20
—Desired [—Desired [—Desired
+ Initial Response - * Iteration 1 K + Iteration 2|
20
30 K . 15
= o s o = ”
E E s E P
< 2 0 W S <10 S
> | e = 5 > e
8 | 810 )
1 S I
10 5
5
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Exy x10°® Exy x10°° Exy x10°8
20 20 =
—Desired 20 [ Desired [—Desired
+ Iteration 3| + Tteration 7| + Iteration 21
15 15 15
= 5 &)
E ~~~~~ E o
~ 10 ~10 EIO
> > >
8 8 8
1S o 1
5 5 5
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
>3 -3 > -3 = x107
Exy x10 Exy %10 Exy

Figure 5. Stress-strain curves for some selected iterations. The desired response is shown by a solid curve,
while the computed (designed) response is denoted with symbols.
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[—Desired Sy
+ Initial Design 1 - °°o°
= 40T | » Initial Design 2 R, E 15
= ¥ Initial Design 3 o °.o° ..-' =
IS © Initial Design 4 R - =
;)30 # Initial Design 5| ‘oo .n".

®

ﬁ
b

Initial Designs (from left to right): 1, 2, 3, 4, 5 Optimized Designs (from left to right): 1, 2, 3, 4, 5

Figure 6. Stress-strain curves for five different initial designs, (a) initial designs, (b) optimized designs.
As apparent from the optimized designs, various optimized configurations satisfy the desired stress-strain
response due to the periodicity of the unit cell.

Similar to the problem presented in Figure 4, Figure 8 shows an unit cell subjected to macroscopic
pure shear £,,, but with eight inclusions. The material properties of the matrix (£; and v4), the
inclusions labeled by number 2 (F2, va, (p1)2, (p2)2, and (Y;,)2), and the inclusions labeled
by number 3 (Es, v3, (p1)s3, (p2)s, and (Y;,)3) are the same as those for the previous study.
We optimize the inclusions’ radii and locations subject to the previously described constraints to
obtain the desired stress-strain response represented by the solid red curve in the same figure. The
size and location of inclusions associated with the desired stress-strain behavior are: (X.; = 0.15,
Y1 =0.15, Ry = 0.1), (X2 = 0.50, Yoo = 0.20, Ry = 0.15), (X3 = 0.85, Y3 = 0.20, R3 = 0.09),
(Xea =0.20, Yoq =047, Ry =0.12), (X5 =0.75, Y5 = 0.50, Rs = 0.10), (X6 = 0.20, Y6 =
0.80, R = 0.12), (X.7 = 0.50, Y.7 = 0.80, R7 = 0.09), and (X3 = 0.80, Y.s = 0.80, Rg = 0.12).
The initial and optimized designs for this problem are also illustrated in the figure. As shown in

Figure 8, the optimizer quickly converges to the desired macroscopic stress-strain curve.

6.3. A cubic unit cell with three spherical particles subjected to a macroscopic pure shear strain

The third verification example is the design of the three-dimensional L? unit cell with three spherical

particles to obtain desired shear stress when subjected to a macroscopic pure shear strain &,
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Figure 7. Deformed and undeformed shapes of the periodic unit cell for the initial and optimal designs
associated with Figure 5. The contours indicate the normalized von Mises stress distribution in the unit cell.
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Figure 8. (a) Initial and (b) optimal designs and their associated macroscopic nonlinear responses for a unit
cell with eight inclusions. The numbers 1, 2, and 3 identify the three different materials for the matrix and

inclusions, respectively.
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(Figure 9(a)). The damage is again limited to the particles and we again assume isotropy and
use B, = 10F; = 100E3 = 100 GPa, 11 = 0.22, and v5 = v3 = 0.34. We also use p; = 10, ps = 1,
and p = 205! for both inclusions, but (Y;,,)3 = 10(Y;,)2 = 500 Pa. The total and perturbation
displacement magnitudes in the periodic unit cell associated with the initial design are presented
in Figs. 9(b) and (c), respectively. The goal of this example is to find the optimal inclusions’ radii
producing the desired macroscopic nonlinear stress-strain response shown with the red solid curve
in Figure 10. Similar to all the verification examples, the desired stress-strain curve represents
the nonlinear behavior of a particular inclusion distribution (i.e., (X.; = 0.158, Y, = 0.158,
Z =0.158, Ry =0.08) , (X2 =0.53, Yoo =0.53, Z.2 = 0.53, Re = 0.15), and (X .3 = 0.158,
Y3 = 0.158, Z.3 = 0.158, R; = 0.08)). As shown in the figure, the optimized unit cell exhibits

the desired response.

Figure 9.(a) 3D periodic unit cell with three spherical particles; (b) and (c) total and perturbation
displacement magnitude in the unit cell subjected to a macroscopic pure shear strain &, for the initial
design. The displacements values are in mm.

7. APPLICATION EXAMPLES

We now apply the proposed multiscale optimization method to design microstructure for an arbitrary
macroscale material response. In contrast to verification examples, in this section, we choose the
desired macroscopic behaviors without any a priori knowledge. In particular, we select trilinear
responses that resemble strain hardening, softening, and a “elastic-perfectly-plastic-like” behaviors,
and our goal is to find the geometrical and material parameters of the microstructures to obtain these
desired macroscopic behaviors.
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Figure 10. The initial (top) and optimal (bottom) designs for a 3D unit cell with three spherical inclusions.
The contours show the damage variable w in the inclusions.

7.1. Nonlinear multiscale design of a periodic composite for a desired macroscopic trilinear

response

In the first application example, we optimize the two inclusions unit cell (cf. Figure 4) of Section 6.2
to obtain the desired trilinear response illustrated by the solid red curve in Figure 11(b). The
optimized results appear in Figure 11. As shown in the Figure 11(b), starting far from the desired
curve, the optimizer tries to approach to the desired curve while reducing the objective function. As
apparent there, the final curve does not completely match to the desired response but it is very close

to it.
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Figure 11. (a) Convergence history of the objective function defined in (49) for the Figure 6(a) design;
(b) stress-strain curves for selected iterations. The desired response is shown with a solid curve, while the
computed (designed) stress-strain curves are plotted with symbols.

7.2. Design of a periodic composite for a set of desired macroscopic trilinear stress-strain curves

In this example, we now design five different two inclusions periodic unit cells to achieve five
different trilinear perfectly plastic macroscopic stress-strain curves®®(Figure 12(a)). The unit cell is
subjected to a macroscopic uniaxial strain . In addition to the inclusion geometry, we also optimize
the constituent properties. The initial material properties are assumed as Ey = 10F;, = 100E3 =
100 GPa, 11 = vy = v3 = 0.34, and (Y;,,)3 = 10(Y},,)2 = 600 Pa. We also use p; = 10, po = 1 and
p = 205~ for both inclusions. The macroscopic nonlinear response for the initial design is plotted
in Figure 12(a) with blue circle symbols. Figure 12(b) shows how the stress-strain curves approaches
the desired curves as the optimization converges to the designs depicted in Figure 12(d). The optimal
design variable values are presented in Table I. As seen in the table, we allow the optimizer to find
different material properties for each inclusion to achieve desired macroscopic stress-strain curves.
Of course, we know the ability to assign properties to each individual inclusion is a difficult task, but
with the ever increasing advancements in additive manufacturing technologies, this may be viable

in the not so distant future.

8§ Note that we do not consider any plastic behavior in this study and nonlinearity is introduced through an isotropic

damage model.
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Table I. Optimal design variables for five different desired trilinear stress-strain curves shown in Figure 12.

R/L E (GPa) Y, (Pa)

Desired Inclusion 1 0.18 0.25 0.52 52.21 31.56 1.50
design 1 .

Inclusion 2 0.18 0.74 0.35 4.59 902.54 2.96
Desired Inclusion 1 0.27 0.33 0.64 136.20 20.18 1.84
design 2 .

Inclusion 2 0.18 0.74 0.25 0.5 119.53 0.1
Desired Inclusion 1 0.28 0.32 0.64 119.67 5.96 23.02
design 3 .

Inclusion 2 0.18 0.73 0.28 0.5 50 0.1
Desired Inclusion 1 0.30 0.34 0.64 50 21.94 100
design 4 X

Inclusion 2 0.18 0.75 0.26 0.5 100 0.1
Desired Inclusion 1 031 0.35 0.65 61.01 29.20 70.94
design 5 .

Inclusion 2 0.18 0.75 0.25 0.90 156.49 0.44
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Figure 12. (a) Initial and desired stress-strain curves; (b) optimized and desired stress-strain curves; (c) initial
and (d) optimized configurations of five two inclusions unit cells.

Now we repeat this example by replacing the perfectly plastic regions in the trilinear stress-strain
curves with five different linear segments to resemble strain hardening and softening behaviors.
Five optimized unit cells are designed for both the single and double inclusion cases. Results for
the single inclusion case appear in Figure 13 and Table II. As apparent in the figure, the unit cell’s

responses with one inclusion are not capable of matching the desired stress-strain curves.
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Figure 13. (a) Initial (dotted curve) and five desired stress-strain curves (solid curves) and (b) five optimized
(dotted curve) and desired stress-strain curves for the single inclusion case.

Table II. Initial and optimal design variables for five different desired trilinear stress-strain curves shown in

Figure 13.

R/L E (GPa) P
Initial design 0.1 100 10
Desired design 1 0.34 50.00 17.85 8.04
Desired design 2 0.34 50.00 14.26 55.17
Desired design 3 0.34 50.00 3491 26.84
Desired design 4 0.34 50.00 55.35 27.86
Desired design 5 0.34 50.00 31.31 75.22

Figure 14 and Table III show the results for the two inclusion cases. The optimized
microstructures reasonably to capture to the desired trilinear stress-strain curves, except for the fifth
curve that exhibits strain softening. A unit cell with more inclusions would be needed to capture this

behavior.

7.3. A cubic unit cell with a spherical particles subjected to a macroscopic pure shear strain

The last example is the design of the 3-D cubic periodic unit cell of size L containing a spherical
particle to obtain a pair of trilinear perfectly plastic macroscopic stress-strain responses (Figure 15).

The unit cell is subjected to a macroscopic pure shear strain £;,. The design parameters are the
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Figure 14. (a) Initial (dotted curve) and five desired stress-strain curves (solid curves) and (b) five optimized
(dotted curve) and desired stress-strain curves for the double inclusion case; (c) initial and (d) final
configurations of the unit cell containing two inclusions.

Table III. Initial and optimal design variables for five different desired trilinear stress-strain curves shown in

Figure 14.
- i (GPa) Yi“(Pa)

Initial Inclusion 1 0.1 0.3 0.55 100 60 10
design Inclusion 2 0.1 0.7 03 1 600 10
Desired Inclusion 1 0.30 0.33 0.63 56.63 12.47 76.84
design 1 .

Inclusion 2 0.18 0.74 0.26 0.50 50 0.10
Desired Inclusion 1 0.30 0.34 0.63 50 141.59 15.45
design 2 .

Inclusion 2 0.18 0.74 0.25 0.5 115.11 30.72
Desired Inclusion 1 0.30 0.33 0.64 50 39.97 81.69
design 3 .

Inclusion 2 0.18 0.75 0.27 0.50 100 0.10
Desired Inclusion 1 0.30 0.33 0.63 180.49 9.20 26.33
design 4 .

Inclusion 2 0.18 0.75 0.27 0.50 50.09 0.10
Desired Inclusion 1 0.30 0.34 0.63 68.76 29.71 100
design 5 .

Inclusion 2 0.18 0.75 0.26 0.50 130.75 0.10

inclusion’s radius and the linear and nonlinear constituent properties. The inclusion’s initial radius
is R; = 0.25, and it is located at the center of the unit cell. The initial material properties are also
assumed as F» = 10F; = 100 GPa, v; = 0.22, and 5, = 0.34. We also consider p; = 10, ps = 1,

and = 20S~1, and Y;,, = 50 MPa for the inclusion damage parameters. The macroscopic material
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nonlinear response associated with the initial design is illustrated In Figure 15(b) with blue circle
markers. Figure 15(c) and (d) show stress-strain curves for some selected optimization iteration
while the optimizer converges to the desired designs. The optimized design variable values are
presented in Table IV. As seen in Figure 15(c) and (d), the unit cell with optimized microstructures
capture the linear responses but is not able to capture the plateau associated with the transition.
Similar to the example presented in Figure 14, a more complex unit cell containing more inclusions

would be needed to achieve a closer match to the desired macroscopic response.
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60 [[—Desired 2 1
€ Initial Response d

o
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—Desired 1 o —Desired 2 o
. ° °
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Figure 15. (a) 3D periodic unit cell with a spherical inclusion subjected to a macroscopic pure shear strain
€zy; (b) initial and desired stress-strain curves; (c) and (d) stress-strain curves for five selected optimization
iterations, approaching the desired macroscopic responses 1 and 2, respectively.
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Table IV. Optimal design variables for two different desired trilinear stress-strain curves shown in Figure 15.

-
100 50 10

Initial design 0.25
Desired design 1 0.35 100 10 9.99
Desired design 2 0.37 100 22.86 9.99

8. CONCLUSIONS

455 A gradient-based, multiscale shape optimization framework was presented for the design of
materials with linear and nonlinear behavior. The multiscale method was implemented using the
mathematical theory of homogenization to design the microstructure of heterogeneous materials
to achieve a desired macroscopic behavior. An irreversible isotropic damage law was adopted
to introduce nonlinearity into the model. This inverse homogenization problem was solved via a

460 gradient-based shape optimization scheme. The sensitivity of this nonlinear coupled system was
also provided through an analytic direct differentiation formulation that efficiently and accurately

provides the gradient of the cost and constraint functions.

The numerical discretization was based on the recently introduced NURBS-based Interface-
enriched Generalized Finite Element Method (NIGFEM) that is extended here to solve 3D

465 problems. The method allows for using a fixed discretization, taking advantage of both Eulerian
and Lagrangian approaches to eliminate mesh distortion issues as well as to accurately represent

geometrical features.

Combining with computational homogenization and a continuous damage model, the presented
optimization scheme was used to design composites microstructures with elastic and/or nonlinear

470 response to achieve desired macroscopic behaviors.
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APPENDIX
A. NURBS CURVES, SURFACES, AND VOLUMES

NURBS are one of the most common methods used to represent complex curves, surfaces and
volumes. A NURBS curve is built from B-splines basis functions, which are defined over a
parametric space, with a set of knot vectors [87, 98, 99]. A knot vector for the 1D curve is a set

of non-decreasing real numbers, ;, representing coordinates (knots) in the parametric space:

E={&, &, s Sypr1)s (A1)

where [ is the number of B-spline basis functions and p is the polynomial order of the B-spline basis

functions. Knot vectors can be presented in the normalized form,

p+1 p+1
— — —
2=40,...0 2 &1, . 19, (A.2)

where the multiplicity adopted for the first and last knots ensures the NURBS curve passes through

the end points.
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The B-spline basis functions B; ,, are defined recursively, starting with p = 0, as

Lif § <€ <&in

Bio(§) = ) (A.3)
0 otherwise
and, forp > 1,
By (€)= Byt (6 + F 2B (6). (A4)

The most notable properties of B-spline basis functions are their non-negativity, partition of unity

(i.e., XI:BW (&) =1, for all £), and compact support. The support of B; ,, is limited to the interval
i=1

[§is &i+p+1] and in each knot span [¢;, ;41), there are at most p + 1 non-zero basis functions.

Moreover, they are C?~* continuous at each knot with multiplicity k.

Built on B-spline basis functions, NURBS curves C are defined as

l
c= {s €0.1]:X=C(6) =3 Rip () Pz} , (AS5)

where the P; = [PF P!, PZ-Z]T are the control point coordinate vectors in 3D space, and R; ,, are the

rational B-spline basis functions, i.e., the NURBS basis functions,

Rip (&) = Bip@wi

= - , (A6)
ZlBj,p (&) w;
=

where w; are the associated weights that are equated to one in this study.

In an analogous fashion to NURBS curves, NURBS surfaces I are defined from two knot vectors

2 ={&, &, -, §apr1t and H = {n1, N2, ..., Nm+q+1}. and a bidirectional net of control points
{Pi.j}a 1= 1, 2, ceey l, j = 1, 2, ..., m as
I m
r= {(& M eI :X=8(n=> > Rijpq&n) Pm} : (A7)
i=1j=1
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where the basis R; ; ;. functions are the tensor products of order p and ¢ B-spline basis functions,

B; B; i.j
Rijp.q (& n) = — m,p(g) LU R (A.8)

> > Bryp (&) Bug () wi.n

k=1h=1

where the weights w; ; are again equated to one. Here, each interval [{;, &4+1) X [0j, Mj+1)
is referred to as a knot span. Likewise, a tridirectional net of control points {P;;x}, ¢ =

1,2, .,0,7=1,2, ..., m, k=1,2, .., n and three knot vectors & = {1, &2, ..., §l4pt1}, H =

)

{m, n2, -, Mm+q+1} and Z = {C1, o, ..., Cuyrs1}, are used to define NURBS volumes €2 as

I m n
Q= {(57 0, Q) €017 : X =V (&0 )= > Rijrpar(&n () Pi.j.k} . (A9)

i=1j=1k=1

where the basis functions

Rispan (6 m) = —Diw &) Big () Bur (Qwign (A.10)

n

> i > Beyp (§) Byg () Bhyr (O) We.g.n

e=1lg=1h=1

are again defined via the tensor products of order p, ¢ and r B-spline basis functions. The
basis function R; . p.q.r preserves all of the properties of univariate and bivariate B-spline basis
functions, including compact support, non-negativity, and partition of unity. Interested readers are

referred to [87,98,99] for more information regarding NURBS.

B. NIGFEM FORMULATION

We illustrate the NIGFEM formulation in the content of linear elastic problems. Over a 3D structural
problem with domain Q = ﬁ(lz C R:‘,E;Qi = () with closure ©, which is bounded by 9Q =
Q0 — Q with outward normal vector n, where N, is the number of subdomains Q;,7 = 1,2, ..., No,
over which the material is, without loss of generality, assumed to be uniform. The boundary 052 is

split into two complementary subsets S* and S%, i.e., 9Q = S* U S* and S* N S* = (), upon which
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traction t and displacement u are prescribed. A body force b is applied throughout €2. We assume
N

that the material interfaces are smooth and defined by I' = 'Urll“i C R?, where Ny is the number
1=
N

of interfaces. Without loss of generality, we also assume Drl I'; = 0 (so that Nr = Ng) and the

520 boundary 0f) is fixed for the optimization and denote the normal vector on each material interface

To present the finite element formulation, let us represent the NIGFEM interpolation (1) in the

matrix form as follows:

Ne Ty Ty,
u" (X) = ZNi(x)ui + Zzwjk(x)ajk
i=1 j=1 k=1
(B.1)
= { N(X) ¥ (X) ] )
where
Ny, 0 0 N, 0 0 N,., 0 0
N=10o N~ 0 0 N 0 .. 0 N, 0 |=Ne®L (B.2)
0 0 N 0 0 Ny 0 0  Ni,

525 @ is the Kronecker product¥Y, I'is a 3 x 3 identity matrix, and N, = [Ny Ny ...N,,_] is the vector of

e

element shape functions. We also define

¥=val,
T
U = z Y z z Y z T y z .
ui wd uf oui ouy uj ul ou¥ o oui | (B.3)
T
A = x Yy z €T Yy z €T Y z
a1 A A Mg Gy Qg e Oy ny o Angong, Qg ong, ’

where 1) = [1/111 Y12 ... 7/1n¢jnwk}'

9T9The Kronecker product of two matrices A and B with A = lai,;] is defined as [100]

A® B = [ai’jB] .
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For a linear elastic problem, the discretized equilibrium equation is
KU =F, (B.4)

where U, F, and K denote the global displacement vector, global force vector, and global stiffness

530 matrix, respectively. As usual, K is assembled from the element €2, stiffness matrices K¢,

K¢ = / BT (X)D(X)B (X) df, (B.5)
Q

e

where D is the constitutive matrix for a linear elastic material. The strain displacement matrix

B(X) = [ By (X) By (X) (B.6)
is partitioned such that
ON. IN. ONn,
N g e g g L N g
ON ON. ONnp,
0 29 o 2 g 0 e 0
ON ON. ONn,
By (X) 0 0o oo o 2 g o 2
N = )
ONy ON, 0 AN ON> 0 8Nn5 aNne 0
dy ox oy ox dy ox
N, ON ONs N ON,. ON,.
0 le Byl 0 822 8y2 0 0z oy
ON. ON. IN. IN. ONnp, ONy,
L le 0 Bwl 022 0 (99:2 "' 0z 0 oz |
[ Oy i
oY oY P by
du g g 2 o g .. wlm 0
OYny n
o oY PP
0 %m g o %2 g .. o w g
6w"b n
oY o e
By (X) 0 o0 &%u o o 2 0 0 —
¥ =
Y11 91 0 012 O0i2 0 awnwy‘ "k 3¢n¢,j " 0
dy ox oy ox o Jy ox
0 911 911 0 012 912 0 awn’/’j " awn’/’j "
0z oy 0z dy o 0z oy
011 0 OY11 OYi2 0 912 awn’d’j " 0 3¢n,¢,j "y
0z ox 0z ox o 0z ox i
(B.7)
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By substituting (B.6) into (B.5), we have
K¢ = , (B.8)

where

Kio =3 [ BR OB B, () a0, (8.9

Ko=) /Q . B}, (X)D (X) By, (X) df,
i=1 €

and m, is the number of subdomains in an enriched element. The above holds for the enriched
elements. For all the other elements, B, = 0, and the element stiffness matrix takes the usual form.

Similarly, the global nodal force vector I in (B.4) is assembled from the element nodal force
vector F¢,

e T T
F /seN (X) b (X) dQ+/F N (X)t (X) dr, (B.10)

NSt

where N is the element shape function vector, given by

N(X) = [ N(X) ¥ (X) } ~ (B.11)

Substituting (B.11) into (B.10) leads to

F¢ = : (B.12)
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where

F¢ = mz[ " NT (X)b (X) dQ + / NT (X)t (X) dF},

= r{nst
Fo=) 7 (X) b (X) dQ+/ T (X))t (X) dT'|. (B.13)
— Lol rnst

As with the element stiffness matrix, F¢ # 0 only for the enriched elements. To evaluate the
integrals appearing over the enriched element subdomains Qgi) in (B.9) and (B.13) special care must
be taken. We perform these integrations by Gaussian quadrature using a span-wise mapping (SWM)
in which the element sub-domains serve as integration elements. Further details about NIGFEM
integration and quadrature scheme are provided in [72,74,75]. It is worth mentioning that the SWM

affects the sensitivity analysis.

C. INTRODUCING THE CONTROL POINTS ON SUB-INTERFACE I'*

To discuss how sixteen control points of the sub-interface T'”* (illustrated in Figure 2) are defined,
consider Figure C16. The four control points {P; 1 0}, ¢ = 1,...,4 (shown by red cubes) that define
the boundary NURBS curve C¥, are on the element top face. To determine their precise location,
we first find the intersections between the material interface I' and the element edges. This step is
readily done to obtain the intersection points A and E (shown by the blue triangles). In the next step,
we draw two lines on the top face that are perpendicular to the line segment AE and that divide it
evenly (shown by the green lines, marked with L;,7 = 1, 2). Please refer to Appendix D for more
details on constructing the NURBS equations of the lines L;. The intersection of these two lines
with the material interface I" defines points B and D (depicted by the green circles). We finally
use the global curve interpolation algorithm to construct the NURBS curve Cf that passes through
points A, B, D, and F [87]. In this approach, we use a chord length technique (see the Appendix E)

to assign a parameter value, (;, to each intersection point and select an appropriate knot vector
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s60 B = {01 =04=0,02=Pp,083=Pp,ls=Br =1}. We then solve linear equations

NCP=4

Q; =Ci(8;) = Z R; (Bj)Pi10 (C.1)

i=1

for the control point coordinates {P;i¢},7=1,...,4, where Q;, j=1,....,4, denotes the
coordinates A, B, D, and E of the intersection points A, B, D, and E, NCP = 4 denotes the
number of control points of C'{, and R; are the NURBS basis functions defined in A.6. We can
find the remaining control points of the sub-interface I'” (i.e., {Pijo},i=1,..,4,j=2,..,4)in

565 a similar manner.

Piio\ P30
E PF2.1.0
Lo B
I AP0
Boundary L1

Curves ™ :
7

r

7
oy | :
y3 y2 /// /...’3
Vs \,E
l{ Y1 | - Sub-interface * Intersected

FZ Element 2°¢

Figure C16. Procedure to find the control point coordinates of the sub-interface I'? that are used to define
the boundary curves C§. The control points are shown with the red cubes and the intersection points are
depicted by the blue triangles and green circles.

D. CONSTRUCTING THE NURBS LINE L;

Figure D17 redraws Figure C16 in y; — y5 plane. As explained in Appendix C, the lines L; and Lo

are perpendicular to the line segment AF and divide it evenly. The NURBS equation of line L, has
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the form
2

Li(v8) = ZRi (vB)Pr,, (D.1)
i=1

where R; are the NURBS basis functions introduced in A.6 and P, are the control point coordinates

570 of line L; (shown by green (+4)) defined as

PL1 =0 - n;
) (D.2)

PL2 =0 +n;

. E-A -
where O = A +1withl = (as shown in Figure D17) and
1

n, = h-3X (D.3)

[les > 1]

In (D.3), e, is the basis vector in the y; direction and the constant / is half the diagonal length of the
element face.

As seen in Appendix F, to compute the design velocity of intersection point B using (F.6) we

oPy,
ad,

with respect to the geometrical design parameter d,, to obtain

575 need to obtain the velocity of Py, (i.e. the sensitivity ). To this end, we differentiate (D.2)

8PLi o 00 8111

_ 00  om D.4
dd, — ad, ~ ad,’ (D4)
where
90 _0A a1
dd,  dd, ' od, 3)
_0A 10(B-A)
- od, 3 od,
and
. [(e3 X ;’Tl) lles x 1| h — (e3 x 1) x (n1 : (e3 X 8%1))] 6
odg les x 1| '
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-—— )

Figure D17. Construction of NURBS curve for lines L; and L.

.. .. OA OE . .
The sensitivities 2 and 2 appearing in (D.5) are computed using (F.2).
q q

E. CHORD LENGTH TECHNIQUE

To construct the NURBS curve Cf that interpolates a given set of points Q;,5 =1,..., NCP =4
(e.g., the intersection points A, B, D, and E, illustrated in Figure C16), we employ the global curve
interpolation method [87]. In this approach, we assign a parameter value, j3;, to each point by
using the chord length technique presented in [87]. We require 3 € [0, 1] and select the knot vector
B={p1=pB4=0,p2=PBB,Bs = Bp,Bs = Br =1}, where 3, = 8 and B3 = Bp are computed

from

1Q; — Q1]

Bj=Bj-1+ 7

J=23 (E.1)
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where Q; is the coordinate vector of the point ); and

4
L=>1Q; —Q;l. (E.2)

=2

To perform the sensitivity analysis, we also need to have the sensitivity of the parameter 3; with

respect to design parameter d;, i.e., ZSJ . Since we assign 81 = 4 = 0 and 84 = Bg = 1, we have
i
0p1  0fa 0Bs  OPE
= = = = . E-
ad ~ od; e T Bg, 0 ‘9

Taking derivative of (E.1) with respect to design parameter d;, we obtain

21Q;-Q, -
o) - ML - 19 - Qi 5 i=23 (E4)
8d1 B=B; 8d1 B=Bj_1 L2 ) O N .
590 Wwhere
4
OL _$~01Q;~ Q1| s

od; od;

j=2
F. DESIGN VELOCITY OF THE ENRICHED CONTROL POINTS

In this section, we compute the shape velocity associated with the control points of an integration
element. Note that all the control point velocities for an enriched element, except those of the
enriched control points (i.e., {P; .0}, j, k = 1,...,m = n = 4 on the sub-interface I'* in Figure 2),
are zero. Referring to Figure C16, we evaluate the velocity of the control points {P; 10}, j =
595 1,...,m = 4 by first obtaining the velocity of the intersection point coordinates A, B, D, and E. Let

us derive the design velocity field for A that satisfies (2), that is,

I m
A =S(a,na) =Y > Rij(€a, na) Py, (E.1)

i=1j=1

where (€4, n4) denotes the parametric coordinates (knot values), and P; ; are the control point
coordinates that define the material interface I', presented in (A.7). Assuming that d,, is a geometrical
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design variable and differentiating (F.1) gives

A §A777A B OR; ; §A7 77A 0€a
Vq - (ZZ z J 87dq

i=1j5=1

(ZZaR” £a, na) ”> 377,4 +ZZRU TN

i=1j=1 i=1j=1

(F2)

600 where the vector AVq denotes the design velocity of intersection point A. To compute the velocity

AVq, we must first evalute the unknown sensitivities % and aZA

see that the intersection point A is always located on the top face and on an element edge that is

Referring to Figure C16, we

parallel to e;. Due to this fact, e, and e3 components of AVq are zero . Equating these components

0a

2d, and 87 and subsequently

605 AVq via (F.2). The same approach is used to compute the design velocity field for intersection point

V to zero results in a linear equation that we use to compute

coordinate E, i.e. © V.
In the next step, we compute the design velocity of intersection point coordinates B and D. Let

us start with the point B. As shown in Figure C16, the intersection point B (i.e., I' N L) satisfies

S(¢B, nB) — L1 (vB) =0, (F.3)

where (£4, na) and yp are the parametric coordinates (knot values) of the intersection point B on
610 the material interface I' and the line L1, respectively, and S and L are defined by (F.1) and (D.1). To

compute PV, we first differentiate (F.3) to obtain

OR;. 5, 6‘5 OR;. 5, 0
(ZZ j\SB 773 ) B (ZZ i \SB 773 ”> 87(7115

zl]l i=1j5=1

+ZZR2J £, NB) {(ZaR > 918 +ZR 7B aPL’}—O
i—1

i=1j5=1

(F4)
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Rearranging (F.4) in a matrix form yields a linear equation which we solve to evaluate —— ¢z 3773

ad,’ 8d
andg% 1.e.

I m r
ij OR; OR;
IPILLOTRED IS b SELNIEREN S R LR AT

i=1j=1 i=1j=1 =1

i

9d, (ES5)
G 0= | ZAul E:E:fﬁy(fB’nB)dP” 1,

i=1 i=1j=

. opP
where the computation of L
q

¢ is presented in the Appendix D. Subsequently, we compute

OL (vB)
B _
Vo= 0d,
F.6
B)
=1
615 or alternatively as
0S (£B7 77B)
B _
Vo= ad,
I m
OR; ; 53, 773 ) 0ép ( OR; ; (¢B, nB) onB
ZZ Pij| o+ (D P | o F7
(1 1j5=1 9d, i=1j=1 9n 9dq ED
oP
+ ZZRi.j (B, nB) —77
i=15=1

In the same way, we compute the design velocity field of the intersection point D.
Having the design velocities 1V, ZV,, PV, and PV, we can evaluate the velocities of control

points {P; 10}, j = 1,...,m = 4. Referring to Figure C16 we see that the control points P 1 ¢ and

P4.1.0 coincide with points A and E, therefore,

OP110 4
=4V
0d, g (ES)
OPs10 g '
ad, ~ Vu
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620 To compute the design velocity of the control points P59 and P31, we differentiate the

NURBS curve (C.1) at the parameter values 5 = S and 8 = Sp to obtain

NCP=4 NCP=4
BVQZW:< 5 aRwP> T SRt

ad, — BE;
NCP=4 NCP=4 ‘ (F.9)
DV:M: Z Mp.lo 551) aleo
! ad,  op

where & V, and D V, are obtained from (F.6) and 6@3 nd % from (E.4). The linear equation

0P210 and 0P3.1.0
ad, ad,

(F.9) is trivially solved for the sensitivities . This completes the evaluation of

control point design velocities.

G. SENSITIVITY OF THE RESIDUALS WITH RESPECT TO MATERIAL PARAMETERS

J"R
625 If d; is parameter that describes Dy, the derivative ng of the element Gauss point equilibrium

and damage evolution residuals are computed as

9" Ryp T 0Dy -
~oq, 20 B"U* 1
ad; ( w) ad, (E+B"U°), (G.D
Aty 0G 1 ,_ - 17 0Dg ,_ . )
e _ nyye nyte >
O"Hgp 1+Atuany2(5+BU) ad; (e+B"U°) ifg>0
Cod; . (G.2)
ad;
0 ifg<0
1 o gp
For the damage material parameters Y;,, and p, Er 0 and and for d, =Y,

At p YV =Y, \" 7 =p1Yin — p1 (Y — Vi) Y - Y\
1+ Atp |72 < p1Yin ) (p1Yin)? (exp [_ ( P1Yin > }>]
O"Hgp
ad, ifg>0 ’
0 ifg <0
(G.3)
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O"Hg,

. . 0
It is worth mentioning that we need to compute
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whereas for d; = p;

At <y_ym>m‘1 ~Yin (Y—Ym)< [ (Y—Y)”D
— = |exp|— | ——
1 + At/l ¥2 plY;n (plY;n)2 b ply;n

0dq o ifg>0

0 ifg<0
(G.4)

13

R
aT_gp for both the enriched and regular elements.
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